Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1375300, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38559350

RESUMO

Drought and nitrogen deposition are two major climate challenges, which can change the soil microbial community composition and ecological strategy and affect soil heterotrophic respiration (Rh). However, the combined effects of microbial community composition, microbial life strategies, and extracellular enzymes on the dynamics of Rh under drought and nitrogen deposition conditions remain unclear. Here, we experimented with an alpine swamp meadow to simulate drought (50% reduction in precipitation) and multilevel addition of nitrogen to determine the interactive effects of microbial community composition, microbial life strategy, and extracellular enzymes on Rh. The results showed that drought significantly reduced the seasonal mean Rh by 40.07%, and increased the Rh to soil respiration ratio by 22.04%. Drought significantly altered microbial community composition. The ratio of K- to r-selected bacteria (BK:r) and fungi (FK:r) increased by 20 and 91.43%, respectively. Drought increased hydrolase activities but decreased oxidase activities. However, adding N had no significant effect on microbial community composition, BK:r, FK:r, extracellular enzymes, or Rh. A structural equation model showed that the effects of drought and adding nitrogen via microbial community composition, microbial life strategy, and extracellular enzymes explained 84% of the variation in Rh. Oxidase activities decreased with BK:r, but increased with FK:r. Our findings show that drought decreased Rh primarily by inhibiting oxidase activities, which is induced by bacterial shifts from the r-strategy to the K-strategy. Our results highlight that the indirect regulation of drought on the carbon cycle through the dynamic of bacterial and fungal life history strategy should be considered for a better understanding of how terrestrial ecosystems respond to future climate change.

3.
Pigment Cell Melanoma Res ; 37(1): 21-35, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37559350

RESUMO

Waardenburg Syndrome (WS) is a rare genetic disorder that leads to congenital hearing loss and pigmentation defects. Microphthalmia-associated transcription factor (MITF) is one of its significant pathogenic genes. Despite the comprehensive investigation in animal models, the pathogenic mechanism is still poorly described in humans due to difficulties accessing embryonic tissues. In this work, we used induced pluripotent stem cells derived from a WS patient carrying a heterozygous mutation in the MITF gene c.626A>T (p.His209Leu), and differentiated toward melanocyte lineage, which is the most affected cell type involved in WS. Compared with the wild-type cell line, the MITFmut cell line showed a reduced expression of the characteristic melanocyte-related genes and a lesser proportion of mature, fully pigmented melanosomes. The transcriptome analysis also revealed widespread gene expression changes at the melanocyte stage in the MITFmut cell line. The differentially expressed genes were enriched in melanogenesis and cell proliferation-related pathways. Interestingly, ion transport-related genes also showed a significant difference in MITFmut -induced melanocytes, indicating that the MITF mutant may lead to the dysfunction of potassium channels and transporters produced by intermediate cells in the cochlea, further causing the associated phenotype of deafness. Altogether, our study provides valuable insights into how MITF mutation affects WS patients, which might result in defective melanocyte development and the related phenotype based on the patient-derived iPSC model.


Assuntos
Transtornos da Pigmentação , Síndrome de Waardenburg , Animais , Humanos , Transtornos da Pigmentação/genética , Transtornos da Pigmentação/metabolismo , Síndrome de Waardenburg/genética , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Mutação/genética , Melanócitos/metabolismo
4.
Micromachines (Basel) ; 14(10)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37893247

RESUMO

The effect of graphite powder on the machining characteristics in graphite-powder-mixed electrochemical discharge machining of microholes was still not clear. How the discharge mechanism changed with the addition of graphite powder into the electrolyte, which further led to changes in the morphology of the machined holes, remained to be revealed. In this study, a series of microhole machining experiments were conducted in glass. Comparisons of the discharge energy, microhole entrance diameter, hole taper, and tool electrode morphology after machining were made when machining in the electrolytes with and without graphite powder. Experimental results revealed that there were a lot of small pulse currents distributed on the current waveform when machining with the graphite-powder-mixed electrolyte. The average discharge energy of the small pulse current was 2.8 times as much as that of the general electrochemical discharge. After introducing graphite powder into the electrolyte, the entrance diameter of the hole became larger when the hole depth was deeper than 200 µm. The HAZ width increased with increasing hole depth at the voltage of 37-41 V, while it decreased at the voltage of 43 V. A reduction in hole taper angle with a range of 0.5° to 2.3° was achieved. In addition, after machining in electrolytes with and without graphite powder, the tool electrode surfaces showed different morphologies due to different discharges.

5.
Brain Behav Immun ; 114: 325-348, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37683962

RESUMO

Acquired peripheral hearing loss (APHL) in midlife has been identified as the greatest modifiable risk factor for dementia; however, the pathophysiological neural mechanisms linking APHL with an increased risk of dementia remain to be elucidated. Here, in an adult male mouse model of noise-induced hearing loss (NIHL), one of the most common forms of APHL, we demonstrated accelerated age-related cognitive decline and hippocampal neurodegeneration during a 6-month follow-up period, accompanied by progressive hippocampal microglial aberrations preceded by immediate-onset transient elevation in serum glucocorticoids and delayed-onset sustained myelin disruption in the hippocampus. Pretreatment with the glucocorticoid receptor antagonist RU486 before stressful noise exposure partially mitigated the early activation of hippocampal microglia, which were present at 7 days post noise exposure (7DPN), but had no impact on later microglial aberrations, hippocampal neurodegeneration, or cognitive decline exhibited at 1 month post noise exposure (1MPN). One month of voluntary wheel exercise following noise exposure barely affected either the hearing threshold shift or hippocampal myelin changes but effectively countered cognitive impairment and the decline in hippocampal neurogenesis in NIHL mice at 1MPN, paralleled by the normalization of microglial morphology, which coincided with a reduction in microglial myelin inclusions and a restoration of microglial hypoxia-inducible factor-1α (HIF1α) expression. Our results indicated that accelerated cognitive deterioration and hippocampal neuroplastic decline following NIHL are most likely driven by the maladaptive response of hippocampal microglia to myelin damage secondary to hearing loss, and we also demonstrated the potential of voluntary physical exercise as a promising and cost-effective strategy to alleviate the detrimental impact of APHL on cognitive function and thus curtail the high and continuously increasing global burden of dementia. Furthermore, the findings of the present study highlight the contribution of myelin debris overload to microglial malfunction and identify the microglial HIF1α-related pathway as an attractive candidate for future comprehensive investigation to obtain a more definitive picture of the underlying mechanisms linking APHL and dementia.

6.
PLoS One ; 18(9): e0288640, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37708136

RESUMO

The ELMOD3 gene is implicated in causing autosomal recessive/dominant non-syndromic hearing loss in humans. However, the etiology has yet to be completely elucidated. In this study, we generated a patient-derived iPSC line carrying ELMOD3 c.512A>G mutation. In addition, the patient-derived iPSC line was corrected by CRISPR/Cas9 genome editing system. Then we applied RNA sequencing profiling to compare the patient-derived iPSC line with different controls, respectively (the healthy sibling-derived iPSCs and the CRISPR/Cas9 corrected iPSCs). Functional enrichment and PPI network analysis revealed that differentially expressed genes (DEGs) were enriched in the gene ontology, such as sensory epithelial development, intermediate filament cytoskeleton organization, and the regulation of ion transmembrane transport. Our current work provided a new tool for studying how disruption of ELMOD3 mechanistically drives hearing loss.


Assuntos
Surdez , Perda Auditiva , Células-Tronco Pluripotentes Induzidas , Humanos , Perda Auditiva/genética , Regulação da Expressão Gênica , Mutação , Proteínas Ativadoras de GTPase
8.
Micromachines (Basel) ; 14(2)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36838067

RESUMO

Electrochemical discharge machining (ECDM) is a promising non-traditional processing technology used to machine non-conductive materials, such as glass and ceramic, based on the evoked electrochemical discharge phenomena around the tool electrode. The discharge in ECDM is a key factor that affects the removal of material. Moreover, the discharge current is an important indicator reflecting the discharge state. However, the discharge characteristics remain an open topic for debate and require further investigation. There is still confusion regarding the distinction of the discharge current from the electrochemical reaction current in ECDM. In this study, high-speed imaging technology was applied to the investigation of the discharge characteristics. By comparing the captured discharge images with the corresponding discharge current, the discharge can be classified into three types. The observations of the discharge effect on the gas film indicate that a force was exerted on the gas film during the discharge process and the shape of the gas film was changed by the force. In addition, the energies released by different types of discharge were calculated according to the voltage and current waveforms. The discharge frequency was found to increase with the increase in applied voltage and the frequency of the second type of discharge was approximately equal to that of the third type when the applied voltage was higher than 40 V.

9.
Rev Sci Instrum ; 93(12): 123304, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36586934

RESUMO

Traditional electrochemical etching methods for the needle of a liquid metal ion source (LMIS) easily produce an exponential profile with an uncontrollable tip length and apex radius. Meanwhile, a ledge forms between the needle tip and the needle rod under the etching of the meniscus, which becomes an obstacle for the flow and replenishment of the liquid metal. This paper proposed a two-step rapid reciprocating etching method, which aims to fabricate LMIS tungsten needles with controllable tip length and apex radius, and also with a smooth transition region between the needle tip and the needle rod. In the first step of rough machining, the needle rapidly reciprocates up and down in the electrolyte and rotates to produce a uniform conical profile. However, an ellipsoidal residual portion is generated concomitantly at the needle tip. In the second step of finish machining, the needle shifts down for a given distance and continues to reciprocate until the sharp tip is formed. The tip length fabricated varied from 0.59 to 5.53 mm at different reciprocating strokes. The apex radius ranged from 0.3 to 0.7 µm, and can also be increased to 2 µm by extra reciprocate etching in the electrolyte to meet the LMIS working requirement. A variable named transitivity was defined to quantitatively describe the smoothness of the region between the tip and rod during the etching process. The experimental results showed that a rotation speed of 600 rpm combined with a reciprocating speed of 0.5 mm/s can significantly improve the transitivity of the needle. Those fabricated needle tips have been tested for the indium LMIS and the maximum emission current of the needle tip reached 12 µA.

10.
Front Plant Sci ; 13: 1000558, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36311073

RESUMO

Alpine meadow plays vital roles in regional animal husbandry and the ecological environment. However, different grassland managements affect the structure and function of the alpine meadow. In this study, we selected three typical grassland managements including free grazing, enclosure, and artificial grass planting and conducted a field survey to study the effects of grassland managements on carbon fluxes in an alpine meadow. The carbon fluxes were observed by static chamber and environmental factors including vegetation and soil characteristics were measured simultaneously. Our results show that the alpine meadow was a CO2 and CH4 sink, and grassland managements had a significant effect on all CO2 fluxes, including gross ecosystem production (GEP, P< 0.001), net ecosystem production (NEP, P< 0.001) and ecosystem respiration (ER, P< 0.001) but had no significant effect on CH4 fluxes (P > 0.05). The ranking of GEP under the different grassland managements was enclosure > free grazing > artificial grass planting. Furthermore, NEP and ER at enclosure plots were significantly higher than those of the free grazing and artificial grass planting plots. In addition, different grassland managements also affected the vegetation and soil characteristics of the alpine meadow. The aboveground biomass of artificial grass planting was significantly higher than that of the free grazing and enclosure plots. The vegetation coverage under three different grassland managements was ranked in the order of enclosure > artificial grass planting > free grazing and significant differences were observed among them. Moreover, significant differences in the number of species (P< 0.01) and the Margalef richness index (P< 0.05) were detected under three different grassland managements. Further analysis of the relationship between environmental factors and carbon fluxes revealed that GEP and NEP of the alpine meadow were positively correlated with vegetation coverage, the number of species, and the Margalef richness index. Therefore, grassland restoration should be configured with multiple species, which could improve carbon sink capacity while considering the functions of grassland restoration and production.

11.
Front Plant Sci ; 13: 986034, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36160969

RESUMO

Soil microbial communities are crucial in ecosystem-level decomposition and nutrient cycling processes and are sensitive to climate change in peatlands. However, the response of the vertical distribution of microbial communities to warming remains unclear in the alpine peatland. In this study, we examined the effects of warming on the vertical pattern and assembly of soil bacterial and fungal communities across three soil layers (0-10, 10-20, and 20-30 cm) in the Zoige alpine peatland under a warming treatment. Our results showed that short-term warming had no significant effects on the alpha diversity of either the bacterial or the fungal community. Although the bacterial community in the lower layers became more similar as soil temperature increased, the difference in the vertical structure of the bacterial community among different treatments was not significant. In contrast, the vertical structure of the fungal community was significantly affected by warming. The main ecological process driving the vertical assembly of the bacterial community was the niche-based process in all treatments, while soil carbon and nutrients were the main driving factors. The vertical structure of the fungal community was driven by a dispersal-based process in control plots, while the niche and dispersal processes jointly regulated the fungal communities in the warming plots. Plant biomass was significantly related to the vertical structure of the fungal community under the warming treatments. The variation in pH was significantly correlated with the assembly of the bacterial community, while soil water content, microbial biomass carbon/microbial biomass phosphorous (MBC/MBP), and microbial biomass nitrogen/ microbial biomass phosphorous (MBN/MBP) were significantly correlated with the assembly of the fungal community. These results indicate that the vertical structure and assembly of the soil bacterial and fungal communities responded differently to warming and could provide a potential mechanism of microbial community assembly in the alpine peatland in response to warming.

12.
Micromachines (Basel) ; 13(9)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36144105

RESUMO

Silicon carbide particle reinforced aluminum matrix (SiCp/Al) composites are increasingly used in high-end industries because of their superior comprehensive material properties. However, their advanced properties also create severe challenges for traditional processing technologies. A new hybrid machining method named photocatalytic-assisted jet electrochemical machining (PAJECM) is proposed to improve the machining capability by synchronously removing the metal aluminum matrix and the SiC particles. Comparative experiments were carried out on whether photocatalysis was added. The results show that after photocatalytic-assisted jet electrochemical machining, the height of SiC particles' extrusion on the surface is significantly reduced. Compared with jet electrochemical machining (JECM) without photocatalysis at the same processing voltage, the surface roughness value is reduced, and the processing quality is improved. In PAJECM, the aluminum matrix is removed by electrochemical anodic dissolution, while the SiC particles generate a SiO2 reaction layer through photocatalysis, and the TiO2 abrasive flow's mechanical action repeatedly removes the reaction layer. The electrochemical polarization curves and energy diffraction spectroscopy elemental analysis confirmed the material removal mechanism of PAJECM. Based on analyzing the phenomenon of material removal in detail, a qualitative model of the PAJECM material removal mechanism is established. This study provides valuable insights into the material removal mechanism in photocatalytic and jet electrochemical machining composite processes.

13.
Mediators Inflamm ; 2022: 3378035, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35733520

RESUMO

Background: Allergic rhinitis (AR) is a highly heterogeneous disease, and allergen-specific immunotherapy (AIT) is an effective treatment. This study aims to evaluate the circulating mas-related G protein-coupled receptor-X2 (MRGPRX2) and matrix metalloproteinase-12 (MMP-12) levels in evaluating disease severity and predicting efficacy of SLIT in AR patients. Methods: We enrolled 110 moderate-severe persist AR patients (AR group) and 40 healthy controls (HC group). Circulating levels of MRGPRX2 and MMP-12 were measured, and their associations with disease severity were evaluated. All AR patients were assigned to receive sublingual immunotherapy (SLIT), and the efficacy was evaluated, and serum samples were collected at 1 year and 3 years after treatment. The correlations between serum MRGPRX2 and MMP-12 and clinical efficacy were assessed. Results: The serum concentrations of MRGPRX2 and MMP-12 were significantly higher in the AR group than the HC group, and the elevated MMP-12 levels were correlated with VAS and TNSS, and serum MRGPRX2 levels were correlated with VAS. Finally, 100 and 80 patients completed 1-year and 3-year follow-up and were classified into effective and ineffective groups. Serum MRGPRX2 and MMP-12 levels were lower in the effective group than the ineffective group. Although serum MRGPRX2 and MMP-12 levels did not significantly change after 1 year SLIT, serum MMP-12 levels were decreased 3 years post-SLIT than baseline and 1 year post-SLIT levels. Receiver operating characteristic (ROC) showed that serum MMP-12 was a potential biomarker for predicting the efficacy of SLIT. Conclusion: Serum MRGPRX2 and MMP-12 appeared to be promising biological indicators in reflecting disease severity in AR patients. Moreover, circulating MMP-12 might serve as a reliable predictor for clinical responsiveness of SLIT.


Assuntos
Metaloproteinase 12 da Matriz , Rinite Alérgica , Imunoterapia Sublingual , Alérgenos , Antígenos de Dermatophagoides/uso terapêutico , Biomarcadores , Humanos , Metaloproteinase 12 da Matriz/sangue , Proteínas do Tecido Nervoso , Receptores Acoplados a Proteínas G , Receptores de Neuropeptídeos , Rinite Alérgica/tratamento farmacológico , Índice de Gravidade de Doença , Resultado do Tratamento
14.
Environ Res ; 212(Pt D): 113312, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35513061

RESUMO

Peatlands have accumulated enormous amounts of carbon over millennia, and climate changes threatens the release of this carbon into the atmosphere. Fungi are crucial drivers of global carbon cycling because they are the principal decomposer of organic matter in peatlands. However, the fungal community composition and ecological preferences in peat remain unclear, which restricts our ability to evaluate the role of the fungal community in peat biogeochemical functions. We investigated 54 soils from 6 low-temperature peatlands across China to fill this knowledge gap. The peat was divided into above-water table (AWT) and below-water table (BWT) layers based on the water table fluctuation. We investigated fungal community assembly processes and drivers for each peat layer. The results showed that fungal communities differed significantly among peat layers. The relative abundance of symbiotrophs was significantly higher in the AWT (17.4%) than in the BWT (9.0%), while the abundances of yeast and litter saprotrophs were obviously lower in the AWT than in the BWT. Our results revealed that the assemblage of both fungal taxonomic and phylogenetic communities was mainly governed by stochastic processes in both AWT (87.8%) and BWT (58.6%) layers. However, in the BWT, the relative importance of deterministic processes (28.4%) significantly increased, indicating a potential deterministic environmental selection induced by permanently anaerobic condition. Mean annual precipitation and mean annual temperature were the most critical drives for the assemblage of the fungal community in the BWT. These observations collectively indicate that fungal community assembly is depth-dependent, implying different community assembly mechanisms and ecological functions along the peat profile. These findings highlight the importance of climate driven deep peat fungal community composition assemblages and suggest the potential to project the changes in fungal diversity with ongoing climate change.


Assuntos
Microbiologia do Solo , Solo , Carbono/análise , China , Fungos , Filogenia , Solo/química , Temperatura
15.
Front Microbiol ; 13: 824267, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35185848

RESUMO

Soil microbes are important components in element cycling and nutrient supply for the development of alpine ecosystems. However, the development of microbial community compositions and networks in the context of alpine wetland degradation is unclear. We applied high-throughput 16S rRNA gene amplicon sequencing to track changes in microbial communities along degradation gradients from typical alpine wetland (W), to wet meadow (WM), to typical meadow (M), to grassland (G), and to desert (D) in the Zoige alpine wetland region on the Tibetan Plateau. Soil water content (SWC) decreased as wetland degradation progressed (79.4 and 9.3% in W and D soils, respectively). Total organic carbon (TOC), total nitrogen (TN), and total phosphorus (TP) increased in the soils of WM, and then decreased with alpine wetlands degradation from WM to the soils of M, G, and D, respectively. Wetland degradation did not affect microbial community richness and diversity from W soils to WM, M, and G soils, but did affect richness and diversity in D soils. Microbial community structure was strongly affected by wetland degradation, mainly due to changes in SWC, TOC, TN, and TP. SWC was the primary soil physicochemical property influencing microbial community compositions and networks. In wetland degradation areas, Actinobacteriota, Acidobacteriota, Cholorflexi, and Proteovacteria closely interacted in the microbial network. Compared to soils of W, WM, and M, Actinobacteriota played an important role in the microbial co-occurrence network of the G and D soils. This research contributes to our understanding of how microbial community composition and networks change with varied soil properties during degradation of different alpine wetlands.

16.
ISME Commun ; 2(1): 115, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37938678

RESUMO

Peatlands act as an important sink of carbon dioxide (CO2). Yet, they are highly sensitive to climate change, especially to extreme drought. The changes in the net ecosystem CO2 exchange (NEE) under extreme drought events, and the driving function of microbial enzymatic genes involved in soil organic matter (SOM) decomposition, are still unclear. Herein we investigated the effects of extreme drought events in different periods of plant growth season at Zoige peatland on NEE and microbial enzymatic genes of SOM decomposition after 5 years. The results showed that the NEE of peatland decreased significantly by 48% and 26% on average (n = 12, P < 0.05) under the early and midterm extreme drought, respectively. The microbial enzymatic genes abundance of SOM decomposition showed the same decreasing trend under early and midterm extreme drought, but an increasing trend under late extreme drought. The microbial community that contributes to these degradation genes mainly derives from Proteobacteria and Actinobacteria. NEE was mainly affected by soil hydrothermal factors and gross primary productivity but weakly correlated with SOM enzymatic decomposition genes. Soil microbial respiration showed a positive correlation with microbial enzymatic genes involved in the decomposition of labile carbon (n = 18, P < 0.05). This study provided new insights into the responses of the microbial decomposition potential of SOM and ecosystem CO2 sink function to extreme drought events in the alpine peatland.

17.
Sci Total Environ ; 808: 152140, 2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-34864035

RESUMO

Alpine meadows on the Qinghai-Tibetan Plateau are sensitive to climate change. The precipitation regime in this region has undergone major changes, "repackaging" precipitation from more frequent, smaller events to less frequent, larger events. Nitrous oxide (N2O) is an important indicator of responses to global change in alpine meadow ecosystems. However, little information is available describing the mechanisms driving the response of N2O emissions to changes in the precipitation regime. In this study, a manipulative field experiment was conducted to investigate N2O flux, soil properties, enzyme activity, and gene abundance in response to severe and moderate changes in precipitation regime over two years. Severe changes in precipitation regime led to a 12.6-fold increase in N2O fluxes (0.0068 ± 0.0018 mg m-2 h-1) from Zoige alpine meadows relative to natural conditions (0.0005 ± 0.0029 mg m-2 h-1). In addition, severe changes in precipitation regime significantly suppressed the activities of leucine amino peptidase (LAP) and peroxidase (PEO), affected ecoenzymatic stoichiometry, and increased the abundances of gdhA, narI and nirK genes, which significantly promoted organic nitrogen (N) decomposition, denitrification, and anammox processes. The increase in abundance of these genes could be ascribed to changes in the abundance of several dominant bacterial taxa (i.e., Actinobacteria and Proteobacteria) as a result of the altered precipitation regime. Decreases in nitrate and soil moisture caused by severe changes in precipitation may exacerbate N limitation and water deficit, lead to a suppression of soil enzyme activity, and change the structure of microorganism community. The N cycle of the alpine meadow ecosystem may accelerate by increasing the abundance of key N functional genes. This would, in turn, lead to increased N2O emission. This study provided insights into how precipitation regimes changes affect N cycling, and may also improve prediction of N2O fluxes in response to changes in precipitation regime.


Assuntos
Oxidação Anaeróbia da Amônia , Ecossistema , Aceleração , Óxido Nitroso/análise , Solo , Microbiologia do Solo
18.
Front Plant Sci ; 12: 756956, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721486

RESUMO

Increasing attention has been given to the impact of extreme drought stress on ecosystem ecological processes. Ecosystem respiration (Re) and soil respiration (Rs) play a significant role in the regulation of the carbon (C) balance because they are two of the largest terrestrial C fluxes in the atmosphere. However, the responses of Re and Rs to extreme drought in alpine regions are still unclear, particularly with respect to the driver mechanism in plant and soil extracellular enzyme activities. In this study, we imposed three periods of extreme drought events based on field experiments on an alpine peatland: (1) early drought, in which the early stage of plant growth occurred from June 18 to July 20; (2) midterm drought, in which the peak growth period occurred from July 20 to August 23; and (3) late drought, in which the wilting period of plants occurred from August 23 to September 25. After 5 years of continuous extreme drought events, Re exhibited a consistent decreasing trend under the three periods of extreme drought, while Rs exhibited a non-significant decreasing trend in the early and midterm drought but increased significantly by 58.48% (p < 0.05) during the late drought compared with the ambient control. Plant coverage significantly increased by 79.3% (p < 0.05) in the early drought, and standing biomass significantly decreased by 18.33% (p < 0.05) in the midterm drought. Alkaline phosphatase, polyphenol oxidase, and peroxidase increased significantly by 76.46, 77.66, and 109.60% (p < 0.05), respectively, under late drought. Structural equation models demonstrated that soil water content (SWC), pH, plant coverage, plant standing biomass, soil ß-D-cellobiosidase, and ß-1,4-N-acetyl-glucosaminidase were crucial impact factors that eventually led to a decreasing trend in Re, and SWC, pH, ß-1,4-glucosidase (BG), ß-1,4-xylosidase (BX), polyphenol oxidase, soil organic carbon, microbial biomass carbon, and dissolved organic carbon were crucial impact factors that resulted in changes in Rs. Our results emphasize the key roles of plant and soil extracellular enzyme activities in regulating the different responses of Re and Rs under extreme drought events occurring at different plant growth stages.

19.
Sci Total Environ ; 801: 149604, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34467923

RESUMO

Carbon fluxes (CO2 and CH4) are important indicators of the response of alpine meadow ecosystems to global climate change. Alpine meadows on the Qinghai-Tibet Plateau are sensitive to climate change. Although the temporal allocation of precipitation can vary, its intensity is expected to increase, and its frequency is expected to decrease in the future. In this study, a manipulative field experiment was conducted to investigate how carbon fluxes are altered in response to moderate and severe changes in the precipitation regime. Fluctuations in CH4 flux were large under a severely altered precipitation regime (range of -0.048-0.038 mg m-2 h-1). Severe changes in the precipitation regime significantly reduced soil CH4 uptake by approximately 54.3%. This was probably affected by the decrease in the dissolved organic carbon concentration and changes in the microbial community (mainly Gammaproteobacteria), which were induced by variation in soil water conditions under various precipitation regimes. Under moderate changes in the precipitation regime, the average value of CO2 fluxes (ecosystem respiration) was 698.21 ± 35.19 mg m-2 h-1, which was significantly decreased by 20.7% compared with the control. This likely stems from the suppression of enzyme activity (particularly α-1,4-glucosidase and ß-1,4-glucosidase) and the alteration of microbial community structure in this treatment, which led to a decrease in organic matter breakdown and a reduction in the release of CO2 to the atmosphere. However, CO2 fluxes were slightly (i.e., not significantly) decreased under the severely altered precipitation regime. Such different responses of CO2 flux are probably driven by differences in microbial strategies. This study not only increases our understanding of the mechanisms underlying the adaptation of alpine meadow ecosystems to global climate change but also provides new insight into the carbon source/sink functions of alpine meadows.


Assuntos
Microbiota , Solo , Dióxido de Carbono/análise , Ecossistema , Pradaria , Tibet
20.
J Med Chem ; 64(18): 13704-13718, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34491761

RESUMO

The epidermal growth factor receptor (EGFR) harboring activating mutations is a clinically validated target in non-small-cell lung cancer, and a number of inhibitors of the EGFR tyrosine kinase domain, including osimertinib, have been approved for clinical use. Resistance to these therapies has emerged due to a variety of molecular events including the C797S mutation which renders third-generation C797-targeting covalent EGFR inhibitors considerably less potent against the target due to the loss of the key covalent-bond-forming residue. We describe the medicinal chemistry optimization of a biochemically potent but modestly cell-active, reversible EGFR inhibitor starting point with sub-optimal physicochemical properties. These studies culminated in the identification of compound 12 that showed improved cell potency, oral exposure, and in vivo activity in clinically relevant EGFR-mutant-driven disease models, including an Exon19 deletion/T790M/C797S triple-mutant mouse xenograft model.


Assuntos
Antineoplásicos/uso terapêutico , Receptores ErbB/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Compostos Organofosforados/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas/uso terapêutico , Animais , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptores ErbB/genética , Receptores ErbB/metabolismo , Feminino , Humanos , Camundongos Nus , Camundongos SCID , Mutação , Compostos Organofosforados/síntese química , Compostos Organofosforados/metabolismo , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/metabolismo , Pirimidinas/síntese química , Pirimidinas/metabolismo , Ratos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...